数值计算方法是科学计算的核心内容,它既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际实验的高度技术性的特点,是一门与计算机使用密切结合的实用性很强的数学课程.主要研究内容有:数值计算的误差,插值法,函数逼近与曲线拟合,数值积分与数值微分,线性方程组的直接解法,线性方程组的迭代法,非线性方程(组)的数值解法,矩阵特征值问题计算,常微分方程数值解。